skip to main content


Search for: All records

Creators/Authors contains: "Astratov, Vasily N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17thcentury using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification (M > 50) with the highest resolution (≈0.66 µm atλ= 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned nearn =2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D/λ < 4000 to the formation of the diffracted field at distances of ≈105λ. It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.

     
    more » « less
  2. It is widely discussed in the literature that a problem of reduction of thermal noise of mid-wave and long-wave infrared (MWIR and LWIR) cameras and focal plane arrays (FPAs) can be solved by using light-concentrating structures. The idea is to reduce the area and, consequently, the thermal noise of photodetectors, while still providing a good collection of photons on photodetector mesas that can help to increase the operating temperature of FPAs. It is shown that this approach can be realized using microconical Si light concentrators with (111) oriented sidewalls, which can be mass-produced by anisotropic wet etching of Si (100) wafers. The design is performed by numerical modeling in a mesoscale regime when the microcones are sufficiently large (several MWIR wavelengths) to resonantly trap photons, but still too small to apply geometrical optics or other simplified approaches. Three methods of integration Si microcone arrays with the focal plane arrays are proposed and studied: (i) inverted microcones fabricated in a Si slab, which can be heterogeneously integrated with the front illuminated FPA photodetectors made from high quantum efficiency materials to provide resonant power enhancement factors (PEF) up to 10 with angle-of-view (AOV) up to 10°; (ii) inverted microcones, which can be monolithically integrated with metal-Si Schottky barrier photodetectors to provide resonant PEFs up to 25 and AOVs up to 30° for both polarizations of incident plane waves; and iii) regular microcones, which can be monolithically integrated with near-surface photodetectors to provide a non-resonant power concentration on compact photodetectors with large AOVs. It is demonstrated that inverted microcones allow the realization of multispectral imaging with ∼100 nm bands and large AOVs for both polarizations. In contrast, the regular microcones operate similar to single-pass optical components (such as dielectric microspheres), producing sharply focused photonic nanojets.

     
    more » « less
  3. Abstract

    Label‐free super‐resolution (LFSR) imaging relies on light‐scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super‐resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state‐of‐the‐art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label‐free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction‐limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super‐resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near‐field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere‐assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

     
    more » « less